Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microvasc Res ; 154: 104691, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703993

RESUMEN

Neoadjuvant targeting of tumor angiogenesis has been developed and approved for the treatment of malignant tumors. However, vascular disruption leads to tumor hypoxia, which exacerbates the treatment process and causes drug resistance. In addition, successful delivery of therapeutic agents and efficacy of radiotherapy require normal vascular networks and sufficient oxygen, which complete tumor vasculopathy hinders their efficacy. In view of this controversy, an optimal dose of FDA-approved anti-angiogenic agents and combination with other therapies, such as immunotherapy and the use of nanocarrier-mediated targeted therapy, could improve therapeutic regimens, reduce the need for administration of high doses of chemotherapeutic agents and subsequently reduce side effects. Here, we review the mechanism of anti-angiogenic agents, highlight the challenges of existing therapies, and present how the combination of immunotherapies and nanomedicine could improve angiogenesis-based tumor treatment.

2.
Pathol Res Pract ; 257: 155288, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653088

RESUMEN

Tumor-mediated immunosuppression is a fundamental obstacle to the development of dendritic cell (DC)-based cancer vaccines, which despite their ability to stimulate host anti-tumor CD8 T cell immunity, have not been able to generate meaningful therapeutic responses. Exosomes are inactive membrane vesicles that are nanoscale in size and are produced by the endocytic pathway. They are essential for intercellular communication. Additionally, DC-derived exosomes (DEXs) contained MHC class I/II (MHCI/II), which is frequently complexed with antigens and co-stimulatory molecules and is therefore able to prime CD4 and CD8 T cells that are specific to particular antigens. Indeed, vaccines with DEXs have been shown to exhibit better anti-tumor efficacy in eradicating tumors compared to DC vaccines in pre-clinical models of digestive system tumors. Also, there is room for improvement in the tumor antigenic peptide (TAA) selection process. DCs release highly targeted exosomes when the right antigenic peptide is chosen, which could aid in the creation of DEX-based antitumor vaccines that elicit more targeted immune responses. Coupled with their resistance to tumor immunosuppression, DEXs-based cancer vaccines have been heralded as the superior alternative cell-free therapeutic vaccines over DC vaccines to treat digestive system tumors. In this review, current studies of DEXs cancer vaccines as well as potential future directions will be deliberated.


Asunto(s)
Vacunas contra el Cáncer , Células Dendríticas , Exosomas , Exosomas/inmunología , Humanos , Células Dendríticas/inmunología , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Neoplasias del Sistema Digestivo/inmunología , Neoplasias del Sistema Digestivo/terapia , Neoplasias del Sistema Digestivo/patología , Animales , Inmunoterapia/métodos
3.
Med Oncol ; 41(6): 127, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656354

RESUMEN

Chimeric Antigen Receptor (CAR) based therapies are becoming increasingly important in treating patients. CAR-T cells have been shown to be highly effective in the treatment of hematological malignancies. However, harmful therapeutic barriers have been identified, such as the potential for graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome (CRS). As a result, CAR NK-cell therapy is expected to be a new therapeutic option. NK cells act as cytotoxic lymphocytes, supporting the innate immune response against autoimmune diseases and cancer cells by precisely detecting and eliminating malignant cells. Genetic modification of these cells provides a dual approach to the treatment of AD and cancer. It can be used through both CAR-independent and CAR-dependent mechanisms. The use of CAR-based cell therapies has been successful in treating cancer patients, leading to further investigation of this innovative treatment for alternative diseases, including AD. The complementary roles of CAR T and CAR NK cells have stimulated exploration in this area. Our study examines the latest research on the therapeutic effectiveness of these cells in treating both cancer and ADs.


Asunto(s)
Enfermedades Autoinmunes , Inmunoterapia Adoptiva , Células Asesinas Naturales , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Receptores Quiméricos de Antígenos/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/inmunología , Inmunoterapia Adoptiva/métodos , Animales
4.
Pathol Res Pract ; 256: 155261, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518733

RESUMEN

Through their ability to modify the tumor microenvironment and cancer cells, macrophages play a crucial role in the promotion of tumorigenesis, development of tumors and metastasis, and chemotherapy resistance. A growing body of research has indicated that exosomes may be essential for coordinating the communication between cancer cells and macrophages. One type of extracellular vehicle called an exosome is utilized for delivering a variety of molecules, such as proteins, lipids, and nucleic acids, to specific cells in order to produce pleiotropic effects. Exosomes derived from macrophages exhibit heterogeneity across various cancer types and function paradoxically, suppressing tumor growth while stimulating it, primarily through post-transcriptional control and protein phosphorylation regulation in the receiving cells. Exosomes released by various macrophage phenotypes offer a variety of therapeutic alternatives in the interim. We outlined the most recent developments in this article, including our understanding of the roles that mechanisms and macrophage-derived exosomal biogenesis play in mediating the progression of cancer and their possible therapeutic uses.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Exosomas/metabolismo , Neoplasias/patología , Macrófagos/patología , Proliferación Celular , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...